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1. Introduction

The pion plays a fundamental role in QCD. As the lightest meson and the Goldstone boson

associated with dynamical chiral symmetry breaking, it provides an important testing ground for

our understanding of nonperturbative QCD. Currently, our experimental knowledge of the pion

structure comes primarily from the Drell-Yan data for pion-nucleon/pion-nucleus scattering. The

valence quark distribution of the pion, qπ
v (x), has been extracted from these data, which in the latest

analysis behaves like (1−x)2 at large x [1]. On the other hand, theoretical predictions of qπ
v (x) have

been made using various methods, and the results are not fully consistent with this large-x behavior

(see e.g. [2, 3, 4, 5, 6, 7]). Lattice QCD should be able to shed light on this puzzling inconsistency,

provided that its computational potential can be extended beyond the first few moments of PDFs.

This became possible recently due to the development of large-momentum effective theory

(LaMET) [8, 9], which allows to study parton observables such as the PDFs from equal-time Eu-

clidean correlations. LaMET has been applied to compute various nucleon PDFs [10, 11, 12, 13,

14, 15, 16, 17, 18] as well as meson distribution amplitudes (DAs) [19, 20], and yields encouraging

results. In parallel with the progress using the LaMET approach, other proposals to calculate the

PDFs in lattice QCD have been formulated [21, 22, 23, 24, 25, 26], each of which is subject to

its own systematics. These approaches can be complementary to each other and to the LaMET

approach.

Here we report the results of the first direct lattice calculation for the valence quark distribution

of the pion using the LaMET approach. The calculation is done using clover valence fermions on

an ensemble of gauge configurations with N f = 2+1+1 (degenerate up/down, strange and charm)

flavors of highly improved staggered quarks (HISQ) [27] generated by the MILC Collaboration [28]

with lattice spacing a = 0.12 fm, box size L ≈ 3 fm and pion mass mπ ≈ 310 MeV. Our results are

comparable quantitatively with the results extracted from experimental data [1] as well as from the

Dyson-Schwinger equation [5].

2. From quasi-PDF to PDF in the pion

The quark PDF in the pion is defined as

qπ
f (x) =

∫

dλ

4π
e−ixλn·P 〈π(P)

∣

∣ψ̄ f (λn)/nΓ(λn,0)ψ f (0)
∣

∣π(P)
〉

, (2.1)

where the pion has momentum Pµ = (P0,0,0,Pz), ψ f , ψ̄ f are the quark fields of flavor f , nµ =

(1,0,0,−1)/
√

2 is a lightlike vector, x denotes the fraction of pion momentum carried by the

quark, and

Γ(ζ n,ηn)≡ exp

(

ig

∫ ζ

η
dρ n ·A(ρn)

)

(2.2)

is the gauge link. The valence quark distribution is given by qπ
f ,v(x) = qπ

f (x)−qπ
f̄
(x) with qπ

f̄
(x) =

−qπ
f (−x), and satisfies

∫ 1
0 dxqπ

f ,v(x) = 1. For a charged pion, we have qπ
u,v(x) = qπ

u (x)− qπ
ū (x) =

qπ
u (x)−qπ

d (x) due to isospin symmetry.

The quark quasi-PDF can be defined in a similar way to Eq. 2.1:

q̃π
f (x) =

∫

dλ

4π
e−ixλ ñ·P 〈π(P)

∣

∣ψ̄ f (λ ñ)/̃nΓ(λ ñ,0)ψ f (0)
∣

∣π(P)
〉

, (2.3)
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except that ñµ = (0,0,0,−1) is a spacelike vector with ñ ·P = Pz. As pointed out in Refs. [29, 30],

the Dirac matrix /̃n = γz can also be replaced by γ t , which has the advantage of avoiding mixing

with scalar PDF [31, 32]. The choice of γ t has been used in the calculation presented here.

The quasi-PDF contains ultraviolet (UV) divergences that have to be removed by renormaliza-

tion. The renormalization can be done nonperturbatively in the RI/MOM scheme [16, 33], where

the bare coordinate-space matrix element h̃(λ ñ) showing up on the right hand side of Eq. 2.3 is

renormalized by demanding that the counterterm Z cancels all the loop contributions for the matrix

element in an off-shell external quark state at a specific momentum [33, 16]:

h̃R(λ ñ) = Z−1(λ ñ, pR
z ,1/a,µR)h̃(λ ñ), (2.4)

and

Z(λ ñ, pR
z ,1/a,µR) =

Tr[/p∑s〈p,s|ψ̄ f (λ ñ)/̃nΓ(λ ñ,0)ψ f (0)|p,s〉]
Tr[/p∑s〈p,s|ψ̄ f (λ ñ)/̃nΓ(λ ñ,0)ψ f (0)|p,s〉tree]

∣

∣

∣

∣

p2 =−µ2
R

pz = pR
z

. (2.5)

The nonperturbatively renormalized quasi-PDF can then be connected to the PDF in the MS

scheme through a factorization or matching procedure:

q̃π
v,R(x, ñ ·P, µ̃) =

∫ 1

0

dy

y
C

(

x

y
,

µ̃

µ
,

µ

yñ ·P

)

qπ
v,R(y,µ)+O

(

m2
π

(ñ ·P)2
,

Λ2
QCD

(ñ ·P)2

)

, (2.6)

where µ̃ and µ denote the renormalization scale for the quasi-PDF and the PDF, respectively. mπ

is the pion mass. The matching kernel C can be computed perturbatively. In the present calcu-

lation, we have included the kernel up to O(αs), as well as meson mass corrections [11]. The

O(Λ2
QCD/(ñ ·P)2) correction is numerically rather small in the present case.

3. Lattice calculation setup

In addition to the setup described in the Introduction, the gauge links are one step hypercubic(HYP)-

smeared [34] with the clover parameters tuned to recover the lowest pion mass of the staggered

quarks in the sea [35, 36, 37, 38]. On these configurations, we calculate the time-independent,

nonlocal (in space, chosen to be in the z direction) correlators of a pion with a finite-Pz boost

h̃lat(z,µ,Pz) =
Pz

P0

〈

π(~P)
∣

∣

∣
ψ̄(z)Γ

(

∏
n

Uz(nẑ)

)

ψ(0)
∣

∣

∣
π(~P)

〉

, (3.1)

where Uz is a discrete gauge link in the z direction, ~P = {0,0,Pz} is the momentum of the pion, and

Γ = γ t .

To control the systematics due to contamination by excited states, we vary the Gaussian smear-

ing parameter to best suppress the excited state, resulting in a clean ground-state pion. In addition,

we use a simultaneous fit of the pion matrix element three-point correlators with four source-sink

pion separations, 0.72, 0.84, 0.96 and 1.08 fm. Fig. 1 shows the real part of the matrix element for

Pz = 1.32 GeV using various combinations of data and analysis strategy. We use multiple values of

pion momenta, Pz = {0,0,n 2π
L
}, with n ∈ {2,3,4}, which correspond to 0.86, 1.32 and 1.74 GeV,

respectively.
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